考虑到有些同学对于天文知识有些迷糊,比如什么行星不发光肉眼看不到啊云云,所以这里先解释一件事:
    观测记录到底记录的是什么内容。
    从性质角度上来看,观测记录可以分成两个类型:
    一是肉眼观测。
    二是望远镜观测。
    上面这句话如果还无法理解,真可以另请高明了……
    人类肉眼能看到的天体决定于该天体的“视星等”,也就是观测者在地球上用肉眼所看到的星体亮度。
    视星等的大小可以取负数,负得越多亮度越高,反之则越低。
    视星等大于+6的天体,就几乎不可能用肉眼观察到了。
    比如冥王星是+13.65,海王星是+7.9。
    所以肉眼观测的情况下。
    除了极限条件下可见的天王星外。
    平时能被看到的行星就只有水星、金星、火星、木星、土星这五颗而已。
    因此在望远镜发明出来之前的星图,记录的99%都是恒星。
    至于望远镜就不一样了,它可以观测到很多行星,包括了海王星冥王星以及各类小行星等等……
    当然。
    这里的‘很多’二字,是相对于肉眼而言的。
    如果与恒星探测相比较,行星探测的难度就要高上无数倍了。
    因为行星既不发出可见光,体积一般也都不大,只能靠着反射恒星的光线显形。
    由于很难直接观察到行星,所以在目前的天文界,主要用多普勒分光法和凌日法等间接手段来捕捉行星。
    多普勒分光法是利用行星引力造成恒星的微小摇动来判断行星的存在,并可计算出行星质量等信息。
    凌日法则是根据行星从恒星前方横穿过时观察到的恒星亮度下降来判断行星存在,并能由此推断出行星的质量和大小,甚至其内部构造等多种物理要素。
    另外,行星穿过恒星面时利用分光分析,还可以调查行星大气的动态及成分等等——这也是大家经常可以在新闻上看到发现某某系外行星可能适合生存的技术支撑。
    到本章更新为止,一共只有5113个太阳系外的行星被确认存在。
    其中97%以上的行星都并没有被直接观察到,而是通过上头介绍的手段被确认的。(查询网址exoplanet.eu/catalog/,感兴趣的可以保存一下,实时更新,昨天就发现了一颗新的)
    事实上直到2004年,天文学家才第一次直接观察到太阳系以外的一颗行星,叫做2m1207b。
    ok,话题再回归原处。
    很早以前提及过。
    天文望远镜的发明在1609年,由伽利略制成。
    因此早于1609年之前的观测记录都是肉眼观测,主要用于协助参考。
    计算分辨使用的数据,都是1609年后用望远镜的观测记录,包括1609-1839年之间的手绘,以及1839年之后的黑白影像。
    这也是为什么几万份观测记录,最终只有四千多份会被拿来充作筛选样本的原因:
    这些都是利用天文望远镜拍摄或者手绘下的记录,这种尺度才有可能记录下冥王星的存在。
    一般来说。
    在数学定义上,手绘观测记录对于星体的准确度只有5%左右。
    也就是100张记录里头,大概有5张符合纯数学的计算结果。
    “银经偏差值0.0072,532号档案未发现明显异常!”
    “银经偏差值0.0151,259号档案未发现明显异常!”
    “黄经偏差值0.4496……777号档案移动轨迹明显!”
    “收录!”
    “黄经偏差……”
    随着时间的推移,一张张观测记录被辨识分类。
    其中绝大部分被重新装回了原本封存的档案里,但也有少部分被留在了桌面上。
    看着身边两厘米厚的小纸堆,徐云抹了把额头上的汗水,呼出一口浊气。
    实话实说。
    今天现场的难度比他预计的还要高一些。
    在徐云上辈子还在没下海经商的时候,曾经在单位的组织下,听过一次张家祥先生的讲座。
    讲座上。
    张家祥先生提到了他的尊师,华夏近代天文学的奠基人张钰哲院士,那部分内容令徐云至今难忘。
    张钰哲院士出生于1902年,第1125号小行星中华星就是他在1928年时发现的。
    1950年时候。
    张钰哲院士被任命为中国科学院紫金山天文台台长,并且开展了小行星轨道测定。
    可当时别说超算了,国内连普通的计算机都见不着半个零件呢——国家要到六年后才会成立中科院计算技术研究所筹备委员会,并且在老大哥的援助下得到了m3型计算机的相关资料。
    直到1958年。
    国内才制造出了每秒30次的电子管计算机。
    所以在50年代,张钰哲院士和李珩先生组织了一批七十多人的团队,靠着肉眼去计算、分辨观测记录。
    1950年啊……那个时间点的大环境大家应该都多多少少了解一些。
    当时新华夏刚刚成立,百废待兴,国家的钱袋子紧巴巴的。
    别说科研了,甚至连大典上的飞机都不够数呢:
    大典上只能把17架飞机分成6个梯队,其中有9架p-51来回飞了两次。
    所以那个时期,张钰哲院士他们是没多少经费去拍摄相片的——因为底片很贵。
    他们分辨的观测资料主要来自老大哥,老大哥当时和咱们关系还不错,三年内传了7000多份观测记录。
    数量确实不少,但这玩意儿有个很麻烦的地方:
    它们都是扫描版,辨识难度和原件完全是两个概念。
    就是在这种条件下。
    张钰哲院士他们咬着牙去推导公式,然后按照差值去比较观测记录。
    最终在50-54年之间,他们发现了40多颗新星,为华夏的天文学发展打下了极其坚实的基础。
    说句不太好听的话。
    肉眼对比是一种很原始、很无奈、甚至可以说很‘蠢’的方法。
    但在计算机出现之前,这也是唯一可用的一种选择。
    1950年如此,1850年亦然。
    随后徐云深吸一口气,继续做起了校对。
    只见他重新拿来一张纸,飞快的按照之前的计算过程动起了笔。
    “f=@(x,y)2.4645*x^2-0.8846*x*y+6.4917*y^2-1.3638*x-7.2016*y+1……”
    一分钟后。
    徐云看着面前这张编号为1111的档案偏差值,眉头微微一皱。
    根据档案袋上的备注显示。
    这是一张1846年7月份,格林威治天文台拍摄下来的观测图像。
    通过银道坐标系记录,有两张同样是黑白照的佐图。
    理论上来说。
    这张观测记录的坐标差,应该是可以精确到小数点后四位数的——还是以之前举过的从魔都偏到津门为例,正常观测记录可以确定的偏差值是魔都与津门之间的城市经纬度差,相对比较宽泛一点。
    比如有可能是松江到津门,也有可能是崇明岛到津门,只能确定具体的城市。
    而这张观测记录的精确值却很高,可以确定是从魔都ja区到津门wq区,顶多就是街道分不太清罢了。
    但徐云计算出的数值却和档案偏移的轨迹难以互补,大致就是跑到了浦东那边……
    见此情形。
    徐云犹豫片刻,还是将它分到了移动轨迹明显的分类里。
    或许是坐标系录入的时候有问题吧。
    毕竟19世纪对于坐标的记录还是有些原始,多半影响不大。
    就这样。
    时间继续流逝。
    七点半……
    八点半……
    九点……
    九点二十……
    三个多小时后。
    约翰·彼得·古斯塔夫·勒热纳·狄利克雷放下手中的笔,说道:
    “银经偏差值0.7812……4229号档案移动轨迹明显!”
    说完话。
    他下意识便又抽出一张演算纸,准备进行下一次计算。

章节目录

走进不科学所有内容均来自互联网,看的书只为原作者新手钓鱼人的小说进行宣传。欢迎各位书友支持新手钓鱼人并收藏走进不科学最新章节